4 Differentiation

41 The Slope of a Function

If atax system is described (see Section 1.1) by thelinear function

Y =3004+0.7X
thenwhen X goes up by £1, Y goes up by 70p, and tax, which isgiven by thefunction

T =03X-300
goes up by 30p. Infact, for any increase in X, thereis anincrease in Y of 70% of the
increaein X, and anincreaseinT' of 30% of theincreasein X. Formally, if X increases
by an amount A X then Y increase fromY = 300 + 0.7X to

Y+AY = 300+0.7(X+ AX)
3004+ 0.7X +0.7TAX =Y +0.7TAX
so that ﬁ% =0.7. In agraph, thisquantity iseas |y seen to measure the dope of theline.
For the general linear function

Y = a+bX
AY
- =}
AX
which means that the slope of the graph isthe sameat dl vaues of X (whichiswhy itisa

straight line).
The same cannot be true of non-linear functions. For ingtance, if a ?rm’'stota cogsare
a function of the quantity of the good it produces, such that
C=Q?
then the effects of costs of each unitincrease in quantity are given by the table:

Q |o 1 2 3 4 5

C 0 1 4 9 16 25
~— ~— ~— —~— ~

AC 1 3 5 7 9
AQ 1 1 1 1 1

0] thatﬁ—g depends on the value of Q). But it aso depends on the vaue of AQ, for when
quantity goes from Q to Q + AQ, cost goes from C = Q? to

CH+AC = (Q+AQ)?=Q%+2Q.AQ + AQ?

50 AC = 20.A0 + AQ?
AC
and m = 2Q+AQ



Theterm AC'/AQ can beregarded as the marginal cost of production, but the fact that it
depends on how large is the increment AQ in output makes this de?nition unsatiSfactory. To
resolve this problem we let the output change become arbitrarily small, or, in other words,
let AQ tendto zero (usudly written asAQ — O). Asthisoccurs AC/AQ — 2@, and we
get a unique value for margina cog a each level of output. For example, margind cost
would be 4 when @@ = 2. Ingraphical terms this would correspond to the slope of the line
(thetangent) that just touches the graph of C' = Q?at the point Q = 2.

Graph of y = 22 and its dope.
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42 TheDe?nition of aDerivative

Theslope of afunction at a point isotherwise known as the derivative of the function at this
point, and the process of ?nding the derivative is cdled differentiation In the above cost
example we cond dered the ratio

AC _ (Q+AQ)1°-Q*
N AQ =2Q + AQ

and arguesthat AC/ AQ “tendsin the limit” to 2Q) as AQ tends to zero. Thiscan bewritten
formaly as

¢ LzrmtA = 2@

dQ ~ RQ—0AQ
wherej—g isthe notation for the derivative of cogt C with respect to output Q. All marginal
concepts in economics (margina cost, revenue etc.) are normally de?ned as derivatives of
the appr opriatefunctions.
The concept of aderivative can be applied to any function. The notation

Y = f(X)

isused to express the fact that Y is afunction of X, without explicitly stating what kind of
function (linear,quadratic,...) itis. Then thederivativeis de?ned as

AY AY i {f(X +AX) — f(X) }

Ax Kty = R AX

Alternative notations include replacing AX by h, or writingdk as 4
F'(X), 45, f'(@), D(f()),y', Dy.

Normdly, functions are not given in asmple form, there are totd cost functions that
could take complicated forms as: TC' = 2Q* — 18Q? +60Q + 50. Termsof @ are multiplied
by constants, have exponents, etc. Therefore, we will need a sat of rules that helps us ded
with such functions.

43 Rulesfor Differentiation

We have already seen that
. dY
Y = 22 implies — =2X
v TPISS X
. dY
Y = aX+b implies ﬁ_a
from which it dso follows that 4X = O whenY = ¢, a congant. Derivatives of more

dx =
complicated functions can be obtained by usng two smple rules of differentiation which

follow directly from the above de?nition of derivatives.
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If Y = AX)+ f(X),
ay  dfi(X) | dfs(X)
dx dx dx
i.e., thederivative of the sum of two functions is the sum of the derivatives of the functions.
Rule 2:
If ¥ = af(X) whereaisacongan,
& dX)
dxX dx

These two rules, together with what we already know about derivatives, imply that

If Y =ar’+0bX +c then %zQam—O—b.

Further rules of differentiation alow usto widen cons derably the range of functions that
can be differentiated. Proofs of therules will not be given: interested students can ?nd them
in textbooks.

Rule 3 (the product rule): If Y=UV. wheeU andV aefunctionsof X, thenY is
afunction of X and

Examples:

1L Y = (X +2) (aX?+bX), 4 = (X +2)- (20X +b) + (aX? + bX)

2. fYy =X3=X? . X, 4 = X2 4 X - 2X = 3X?

Rule 4: (the quatient rule): IfYy = {1, where U and V arefunctionsof X, thenY isa

function of X and

d_Yi‘/'dﬂ—Uﬂ

dX V2

Examples:

X+42
LY =83 % = x4

2. IfY:X—Q,g—YX =_2X3
Rule 5: IfY = X" wheren is any number

dY

- Xn—l
ax "
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Example The functions X2, X, X° = 1, X3, X 2 havealready been shown by different
methods to satify thisrule.

a1
dX 3

2
3

Ify = X3

Rule 6: If Y isafunctionof X insuch away that X isalsoafunctionof Y then

%i(ﬂ)‘l

ay — L& \dx

Exanple 1fY = 2% then X = v?. S04 = 3yZand 4% = (4X) 7' = o5 = 1x-2/3,
This provides another way of obtaining the result indicated in the previous example.

Rule 7: If Y isafunctionof V and V isafunction of X, thenY isa function of X and
dY dY dV

dX — dV'dX

Example If YV = (a2? + bX)3, 42X = 1(aX? + bX)"3(2aX +b)

These rules of differentiation are sometimes useful even when we do not know what kind
of function we are dealing with. For example, if all we know isthat the price of a?rm’s
product is a function of the quantity it sdls, i.e., the demand curveis P = f(Q), we can
derivethe margind revenue. Totd revenueis

R=Q.P=Q.f(Q)
and Rule 3implies that marginal revenue is
dr _ df(Q)
© -9 /@

Higher derivatives

Similarly, the second derivative is obtained by differentiating the ?rat derivative again
with respect to z :

(@) ==(f(x) ie,if fx) =32 —5x+4,then, f'(z) = 62—5,and f"(z) = 6.

And, the third derivative would be obtained by differentiating the second derivative with
respect to x and so on and so forth.

Examples:

1. Simplify each of the following so that the differentiation may be carried out using the
power rule, and obtain ?rgt and
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second derivatives: a) & Q2 ~.b) 4AQCQ, otz d) \/52Q3 e)3( ) +2

L =Q2=Q° [(Q)=8Q7 [(Q) =56Q°
b) 4@ SAQE o aQiR= Q0 Q) =127 1(Q)=21Q
o) —J;',’— =2’ B4l = 4?2 Q) =-1z711 2272 = 3722273
(@) =2z + 6z
d VR =507 f(Q)=53Q 1 =40} Q) =PIt =40
e)3<92—‘g%‘?)+2:3%3+3%+2:3Q2—1+6Q1—1+2:3Q1 +2=30+8
@ =3 f(@Q)=0
2. Find the ?rgt, second and third derivatives of the following tota cost function:
TC =% —8Q*+22 1+ 180
TC'(Q) = i = QT - 16Q* 7 + 5Q' = 22 - 16Q" + 3Q° =
Q% -16Q +3 iy

TC"(Q) = 75 (Ea®) = £Q* 1 — 16Q 1 = £Q' — 16

44 Useof differentiation to deter mine whether the slope of a function
isincreasng or decreasing:

The sgn of the derivative of y, , indicates whether y isincressing or decressing as z is
increasing because: o

when y isincreasing, for z; < x5 1 f(x1) < f(ay), then, [El=Llod — = 5 4
y' > 0 (the slope is positive and 0 isthe ?rst derivative) ‘

when y is decressing, for x; < x5 @ f(x1) > f(x2), then, .ﬁ_ngzﬁ =7
=1/ < 0 (the dopeis negativeand sois the ?rg derivative)



Think of theexampley = 22
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Think of example in Addendum (Sketching the graph of the derivative).
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Elasticity

If demand is afunction of income, theincome dasticity of demand isde?ned as

_ proportional changeindemand = " Y AQ

~ proportiona changeinincome ~ 4Y  Q AY
Thiswill vary in generd with AY (in the same way asmargina cost previoudy varied with
AQ). A more precise de?nition that does not depend on the increment AY” is therefore:

. Y dQ
Y= oay
Example: Thefunction Q = aY® has income elasticity constant and equa to b.

Proof: 42 = aby?~!. Then, ey = 542 = Xapy?—! = ¥ ) —p

The pricedasticity of demand is de?ned ina smilar way

proportional changein demand P dQ
proportiona changein price Q P~

eq =

le@L@

Example: If the demand curve isgiven by Q = a P~ then the dasticity of demand is—b at
all priceleves.

Proof: 42 = —abP~"~1. Then, ey = 5498 = —Lappt-1 = el —p

The value of eq4 is expected to be negative (downward sloping demand curve), but
statementsinvolving dasticities usually disregard the sign and refer only to the magnitude of
the number (“more dagtic” therefore indicatesa larger sized negative number for e;). The
magnitude of a number of X, without regard to its sign, is denoted mathematically by | X|
(the absolute vaue of X)

The following results about price easticity of demand are now fairly sraight-forward to
prove.

1. If leg| > 1, apricerise reducesrevenue. If |e4] < 1, apriceriseraisesrevenue. |f
eq = 1, revenue is congtant.

2. If aproducer chooses a price a which marginal cost equas margind revenue and if
marginal cos is positive, |eq| > 1 at the chosen price.

3. The price set by aproducer who equates margina cost and margina revenue will be
P=MC

1+6d
Proof:
M
L Jeq] > 1= |eq| = >1= ’VAP’ > 1= |%AQ| > %AP. Thus, anincreasein

price by 1%, producesafdl in the quantity sold bigger than 1%! Thus, tota revenue will
auffer.

By the same reasoning, i

WAP‘ < 1, and since increasing prices a % will
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provoke afdl in quantity smaller than that %, tota revenue will incresse.

If |eq] =1, anincreasein prices is perfectly compensated by adecrease in quantity sold,
50 that revenuesdo not change.

. If aproducer chooses a price a which marginal cost equas margind revenue and if
margina cogt is postive, ey > 1 at the chosen price.

MC=MR= 48 = 4(PQ) =46Q + P => 454 =488 11 =1L +1
LoMC e =

—P
=p-c > |

.Frombefore,MC:MRéMC:P(-e% ):>P MC(z47)

Examples (from Bradley and Patton):

. When the price of agood is £20, the price dasticity of demand is-0.7. Cdculate the
percentage change in demand Q when ;

a) The priceincreases by 5%.
b) The priceincreases by 8%.

L0 L0
Jeq=Lr = 07T=2

AQ
If 48 = 5%, it meansthat 45 = 0.05. So, —0.7 = g% . Thus, 452 = (=0.7) x 0.05 =
—0.035. In other words, the percentage change in demand is -3.5%.
.AQ

LQ
b) ca = 25 = ~0.7=ZF = 5% S0, 2 = (=0.7) x 0.08 = —0.056. In other
words, the | percentage change indemandis- 5 6%.
. For thedemand functions (i) P = a — bQ (i) Q = ¢ — dP
a) Derive the expressions for the price dasticity of demand in terms of @ only.
b) Cdculate e for thefollowing demand function a ¢ = 100; 500; 900 :
P =60 —0.5Q
a) First, we express the demand function as afunction of P :
P=a-0Q=bQ=a-P=Q=4% —JI;P
Second, we cdlculate 42 = 1.
Last, weknow that : eq = 985 = —1

<0h:1

Q - bQ
_ _ _dQP _ P _ _5=9 _ _dxe | dQ _
TorQ c—dP,% — _4. Then, eq apg =—dg=—d"g*=-3561Two =
e

. P =90 — 0.05Q isthe demand function for graphics cd culators in an engineering
college.

a) Derive expressonsfor e; intermsof 1) P only, 2) @ only.
b) Cdculate thevalue of e; when thecaculatorsare priced at P = £20; £30; £70.
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¢) Determine the number of cal culators demanded whene = —1; ¢4 = 0.
& P =90 — 0.05Q, then 45 = —0.05, andd0 Q = 5% — 555 = 1800 — 20P

e, —4QP _ 1P _ 1P _ __1__P ___P___P
d=4rPQ -g-g Q 0.05 Q 0.05 1800—20P 90—P P—90
dQPpP _1 90-0.05Q 90 0.05Q __ 1 _ 1800

€d=4pQ = T0.05 Q = T 0.06Q + 0.05Q — ~~ Q@
b) €d(P = 20) = P90 = 20-90 — 0.28

ea(P = 30) = 5555 = 55255 = —0.50

cal P =T0) = 5 = 85 = 35
0 Ifeq = —1, it meansthat eq = 1 — 3% = —1. Thus, 43¢ = 2, and Q = 900.

If eq = —0, it meansthat eg = 1 — ¥ = 0. Thus, ¥ = 1, and Q = 1800.
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